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The low-temperature properties of a one-dimensional fluid with hard core 
attractive nearest-neighbor interactions have been investigated. The fluid 
exhibits a critical behavior near T= 0 which is, in some respects, analogous to 
that of the one-dimensional Ising models. With the proper choice of scaling 
variables the singular part of the appropriate thermodynamic potential has the 
same homogeneous scaling form as the Ising model. The correlations in the scal- 
ing region have a,.more complex structure than in the Ising model but do have a 
long-ranged part of scaling form, The T= 0 limit in the scaling region gives 
states of low density and zero pressure whose correlations are those of a two- 
phase state, of which one component is a perfect crystal phase and the other is a 
zero density phase. The positive pressure T= 0 states are single-phase perfect 
crystal states whose long-range order develops continuously as T approaches 
zero. Those Fourier components of the correlations, which correspond to 
reciprocal lattice vectors, diverge as T approaches zero; hence, the transition is 
secon&order, unlike higher-dimensional systems. 
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1. I N T R O D U C T I O N  

It is wel l -known (1~ that  one-d imens iona l  systems with short-range forces 

have no phase t ransi t ions  and,  therefore, no critical points  at nonzero  tem- 

perature. Fo r  one-d imens iona l  Ising models,  however, the state of zero 
temperature  T and  zero magnet ic  field H has most  of the properties of a 
critical point.  If this state is approached through a sequence of states a long 

the H =  0 line, then both  the range of correlat ions and  the susceptibility 
diverge. Nelson and  Fisher (2) have shown, in addit ion,  that  near  this point  

the free energy and  the pair  correlat ions have the scaling properties expec- 
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ted near a critical point. Here I consider the analogous properties of a one- 
dimensional continuum fluid with attractive nearest-neighbor interactions. 
The calculation is straightforward but perhaps worth doing for the follow- 
ing reasons. (1) The spectrum of low-energy states is quite different from 
that of the Ising model, hence, it is not at all clear that these models have 
similar low-temperature behavior. It is also not clear that a square well 
fluid (which has an infinitely degenerate ground state) and a fluid whose 
intermolecular potential has a unique minimum (which has a unique 
ground state) have similar low temperature properties. (2)The Ising 
models have a symmetry, under charge of sign of the magnetic field, which 
helps to locate the critical point and to define the proper scaling variables. 
There is no analogous symmetry in the continuum fluids and the 
appropriate variables are not obvious. (3)It  may be possible to test 
theories (3~ of continuum fluids in their critical region on the one-dimen- 
sional fluid in the same way that Nelson and Fisher (2) have elucidated 
renormalization group methods using one-dimensional Ising models. 
(4) Finally, the high-density low-temperature properties of the fluid have 
no analogue in the simple Ising models. 

In this paper, I primarily consider fluids whose intermolecular poten- 
tials have a hard repulsive core and an attractive part with a unique 
minimum. A brief discussion of the hard core square well fluid, which dif- 
fers in some respects, is also given. I show for these systems that, with the 
proper choice of scaling variables, the singular part of the free energy has 
the same functional form as in the Ising model. If the density is high, the 
correlations at T=  0 are those of a pure solid phase, but at lower densities 
the system phase separates into a solid phase and a zero density phase. The 
"critical point" is reached by allowing T-~ 0 in such a way that the 
pressure p vanishes and the density p becomes less than the minimum (zero 
pressure) density of the solid phase. In this region the singular part of the 
free energy has the Ising scaling form. The correlations in the scaling region 
have a long-ranged part of different scaling form than the Ising model but 
whose spatial dependence is the same. There is, in addition, a nonscaling 
part which has a damped oscillatory character and is absent in the Ising 
model. 

If T-o0 at positive pressure, the correlations approach those of a 
single-phase perfect periodic state so that there is a second-order transition 
to a crystalline state at T= 0 for any p > 0 which has no analogue in the 
simple Ising models. 

The above properties apply to the case where the attractive part of the 
potential has a single minimum. The case of the square well potential is 
somewhat different. There is still a scaling region where the equation of 
state takes the Ising form. There are two major changes. The first is that all 



The Low-Temperature Properties of the One-Dimensional Fluid 239 

positive pressure states approach the hard core close packing density as 
T ~  0. The second is that there exists a new class of T =  0 single-phase 
states whose density is between that of the critical states and the close- 
packed state. These states are not periodic and are explained in more detail 
in the last section. 

In Section 2 the necessary results from the usual (4) treatment of the 
one-dimensional fluid are given. In Section 3 the low-temperature proper- 
ties of the equations of state are derived and discussed, while Section 4 
treats the pair correlations and Section 5 the square well potential. 

2. ONE-DIMENSIONAL FLUIDS 

The statistical mechanics of one-dimensional fluids with nearest- 
neighbor interactions have been adressed in many (4) papers. I will follow 
the notation and treatment of Fisher and Widom,(4~) whose results I briefly 
summarize. 

Let ~b(x) be the intermolecular potential acting between nearest- 
neighbor molecules separated by distance x, and let fi = 1/kT. The restric- 
tion to nearest-neighbor interactions can be met most naturally by assum- 
ing that ~b(x) is of finite range and has an infinitely repulsive core whose 
radius is at least half the range of ~b. ~(fl, z, L) will be the usual grand par- 
tition function of the system confined to length L, with activity z related to 
the molecular mass m and chemical potential # by l n ( z ) = t # + ( � 8 9  
ln(2~m/th2). The usual treatment relates the Laplace transform 0 of the 
grand-partition function to the Laplace transform J of the Boltzmann 
factor by 0 = z / ( 1 -  z J) where 

~'(fl, z, s ) : f ;  e x p ( - s L )  S(t ,  z, L)dL 

and (2.1) 

J ( t ,  s) = f o  e x p ( - s x )  e x p [ -  t~b(x)] dx 

In the thermodynamic limit L ~ 0% the pressure P(t,  z) is given by the 
largest real solution of 

1/z : J(t, tiP) (2.2) 

For potentials ~b(x) which vanish as x--, 0% there will be only one positive 
real solution of (2.2) since J ( t ,  z) is a monotone decreasing function of s 
along the positive real axis. The density P(t,  z) and the isothermal com- 
pressibility K are given by 

l lpz = - J ' ( t ,  tp )  (2.3) 
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and 

(1 + pkTK)/p2z = J"( t ,  tiP) (2.4) 

where J '  and J" are the first and second derivatives of J with respect to its 
second variable. More convenient forms are obtained by eliminating z 
between (2.2), (2.3), and (2.4) to give 

and 

p = - J ( t ,  t p ) / S ' ( t ,  [~p) 

1 + p K / t  = p2J"( t ,  t P ) / J ( t ,  tiP) 

dimensionless pair distribution 

(2.5) 

(2.6) 

C(x)  = The function, 
(p ( x )  p(O) - p2)/p2, is given by 

G ( x ) = ~ 7 ,  exp(anlXl) Ix[ > a  
n (2.7) 

G(x) = - 1  [xl < a 

where the an are the nonzero solutions (assumed discrete) to 

J(fl, tP + a) = J(fl, tP) (2.8) 

and necessarily have negative real parts. The coefficients 7, are given by 

7n = J ' ( t ,  tP)/J'(fl, tP + a,)  (2.9) 

The compressibility sum rule relates K to G(x) by 

p K / t  = 1 + p G(x)  dx (2.10) 
- - o O  

3. E Q U A T I O N S  OF STATE 

I primarily treat fluids whose intermolecular potential ~b(x) is infinite if 
Ixl < a, zero if Lxl > c, and is negative if a < [xL < c with a unique minimum 
at x = b. Such systems have a unique periodic ground state, in contrast to 
fluids with hard core square well potentials which have strongly degenerate 
ground states (and which I discuss briefly in Section 5). It is necessary to 
find asymptotic evaluations of (2.1) for J ( t ,  tiP) as t ~ oo since most of the 
properties of the system follow from J. It is convenient to think of t and p 
as the independent variables, and the required evaluations will depend on 
how p varies as t --' oo. 
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Suppose first that the pressure remains constant and nonzero as 
f l ~ o o .  Then J can be found from (2.1) by saddle point integration 
methods such as 

J(fl, flp)..~exp{-flEpxo+(k(Xo)]}[Zrr/flcy'(Xo)] 1/2 [1 +0(1/82)]  (3.1) 

where x o is the solution of 

p + ~b'(Xo) = 0 (3.2) 

Since ~b is minimum at x = b  and since p > 0 ,  then necessarily 
a < x o < b .  Using (3.1) and (3.2)in (2.5) and (2.6) shows that p ~ l / xo>  
lib and that K/fl ~ 0 as fl--* oo. The T =  0 equation of state is, from (3.2), 
p = -~b'(1/p), which simply equates the pressure to the force of repulsion 
between the equally spaced molecules. Since K/fl--+O as f l ~  oe, (2.10) 
shows that the long-range correlations characteristic of a critical point 
associated with two coexisting phases of different densities cannot develop 
for p > 0 or, equivalently, p > 1lb. 

Hence, to reach the critical state, p must vanish as fl ~ oe. One can 
show, in fact, that the stronger condition s = tip ~ 0 is necessary if K/fl is to 
diverge as f l ~  o% and now a different evaluation of (2.1) is required. 
Because the infinite range of integration can make a large contribution to 
(2.1) for small s, it is convenient to rewrite (2.1) as 

J(fl, s)= exp( - sx ){exp[- f lq~(x)]  - 1 dx + 1/s (3.3) 

Because ~b(x)=0 for x >  c the range of integration m (3.3) is finite, and 
since s remains small the e x p ( - s x )  can be expanded in a (uniformly con- 
vergent) series and the integral done term by term to give 

where 

J(~, s ) =  1/s+ ~ ( - s ) " X , ( ~ ) / n !  (3.4) 
n ~ O  

Xn(fl) = xn{exp[-f lq}(x)]  - 1} dx (3.5) 

The functions X,(fl) are, for large fl, approximately given by 

X~(fl) "~ b" exp[ -flqk(b)][Zrc/flqb'(b)] 1/2 I-1 + O(1/fl)] (3.6) 

and therefore 

X,(fl)/Xo(fl) --* b ~ as fl --, 0o (3.7) 
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Note that, since ~b(b)<0 for attractive potentials, Xn(fl)--, oo as /~ ~ oe. 
The equation of state p(fl, z) is found from (3.4) and (2.2). In terms of the 
variable s = tip the equation of state is 

1/z= 1/s + ~ ( - s ) "  Xn(~)/n! (3.8) 
n=0 

To extract the scaling form from (3.8) the dominant terms for small s and 
large/~ must be kept. Multiplying (3.8) by s and dividing by X1 gives 

s(1/zX~ - Xo/X~) = 1/X~ - s 2 + s3(X2/X~)/2 + '.- (3.9) 

which, with (3.7), shows that the terms cubic and higher in s are negligible 
for small s. Dropping these terms in (3.9) and defining a temperature-like 
scaling variable v and a field-like scaling variable u by 

v2= 1/XI(/~), 2u = 1 / zX~(~ ) -  Xo(~)/XI(~)  (3.10) 

gives the scaling equation of state for the thermodynamic potential-like 
scaling variable s, in the form 

s = - u  + v(l + u2/v2) 1/2 (3.11) 

The singular part of (3.11) is same as that for the Ising model (z) with iden- 
tifications u ~ flH and v ~ exp(-2/?Jex) where Jex is the Ising exchange 
constant. The H = 0 line in the Ising model corresponds to the u = 0 line 
here and, hence, to the line z = 1/Xo(fl) in the (fl, z) plane. 

I now turn to the behavior of the density p and the isothermal com- 
pressibility K as fl --, ~ in the scaling region. The derivatives necessary to 
evaluate (2.5) for p and (2.6) for K can be taken, term by term, in (3.4). A 
straightforward calculation gives 

O "~ (s + s2Xo + "" ')/(1 + s2X~ + " ") (3.12) 

and 
1 + pK/fl = p2(2 + $3X2 -1- ..-)/(s 2 n t- $3)['o -t- . . .)  (3.13) 

where the higher-order terms in s can be neglected for small s. Now from 
(3.11) one can show that, in the critical region, v2/s= 1/SXl-+ 0 as fl--+ oo. 
This, with (3.6) and (3.7), implies that only terms of the form s2Xn and 
constants need be kept in (3.12) and that in (3.13) the s 2 term can be drop- 
ped. Hence 

p ~ s2Xo/(1 + s2Xt) ,.~ l/b(1 + v2/s 2) (3.14) 

l +pK/~p2[2/s3Xo+ X2/Xo]~p2[(2bvZ/s3)+b 2] (3.15) 
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in the critical region. Along the line u = 0 ,  s is equal to v, and from (3.15) 
Kit  diverges as 1Is as t ~ 0% therefore, the critical point is approached. 
The limiting density p = 1/2b is half the lowest possible density of the solid 
( p > 0 )  phase and suggests that the critical state is a mixture of equal 
volumes of the lowest density solid phase and a zero density phase. This 
suggestion will be strengthened by the treatment of the pair correlation 
function in the next section. 

4. C O R R E L A T I O N S  

I consider first correlations in states for which p > 0, and hence 
p> 1/b, as t ~ oo. To find, from (2.7), the pair correlations G(x), (2.8) 
must be solved and (2.9) evaluated. An adequate approximation of J(t,  tiP) 
is given by (3.1) and a similar approximation of J ( t ,  tiP + a) is 

J(t,  tP + a) "~ exp{ - t [ p x o  + ~b(Xo)] } [2zc/t~b"(Xo)] 1/2 exp(-aXo) 

X [-1 "J- 0"2/2t~"(X0) "J- O ( 1 / t  2, 0"/t 2, 0"4/t2)] 

This, with (3.1) and (2.8), gives 

1 + O(1/t  2) = exp(-aXo)[1 + a2/2fl(b"(Xo)+ O(1/t  2, a / t  2, a4/t2)] (4.1) 

to determine a to order i/ft. The solutions of (4.1) are, to leading order, 
an = n(2~i/xo), n = +1, +2,... and are imaginary. The 1/[I corrections to a ,  
can be found from (4.1) for n < N(t )  where N is chosen so that the correc- 
tion terms are small, i.e., 2z2N2/(Xo) 2 fiO"(Xo)~ l. This gives 

an = n(2zci/xo) - 6n, where C~n = n22~2/(Xo)3 flq)"(Xo) (4.2) 

which has a negative real part as required. Were there to be nontrivial 
solutions of (2.8) which approached zero as fl ~ oo, then the order 1/fl 2 
terms in (4.1) should be kept. An examination of these higher-order terms 
shows that no such solutions exist and hence (4.2) should describe all 
solutions of (2.8) which remain in any finite part of the complex a plane as 
t--~ oo. Straightforward use of the asymptotic forms for J(t,  tiP) and 
J(t,  tiP + a) in (2.9) gives, for the coefficients in (2.7), 7n = exp(xoan). If the 
sum in (2.7) for G(x) is split into terms Jn[ <N,  for which the above 
evaluations of the a n and 7n can be used, and into terms [nr ~> N, then 

G+(x)~  ~ 2exp[-fin(Xo+lX[)COS2rm(l +lx l /xo)+Gs(x  ) (4.3) 
l < ~ n < N  

where G, contains the n ~> N terms and is presumed to be short-ranged 
compared to the other terms in (4.3). The superscript + is to indicate that 
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this is the form for p > 0. For/~ large but finite, G(x) is, at large x, a sum of 
damped oscillations whose range increases indefinitely with fi since, from 
(4.2), 6,--* 0 as fl ~ oe. Despite the increasing range and because of the 
oscillatory character of the correlations, the spatial integral of G remains 
finite, as it should, since K/~ ~ O. However, it is easy to see from (4.3) that 
the spatial Fourier transform of G(x) evaluated at any k = 27zn/xo for n > 0 
contains a term proportional to 1/6~, which diverges as fl -+ oe. Thus Bragg 
peaks appear only in the T = 0 limit and develop continuously and, hence, 
the "freezing" into a crystal at T = 0 is a second-order transition. As/~ --* oe 
and N ~  oe the sum in (4.3) approaches the Fourier series for a periodic 
array of 6 function spikes separated by x0, which is characteristic of a per- 
fectly localized periodic state. The lowest density state of this type is 
obtained by letting p--*0 and has density p =  1/Xo= 1lb. The 
corresponding correlations will be designated G~b(X ). 

I now consider the correlations in the critical or scaling region where 
the variables u, v, s are all small (see (3.10) and (3.11)). The appropriate 
small s approximation for J(B,s) is given by (3.4) and a similar 
approximation for J(/~, s + a) is 

where 

J(fl, s + a)= l/(s + a) + ~ ( - s )  " Yn(fl, a)/n! 
n = 0  

Y,(B, a ) =  x ~ e x p ( -  a x ) { e x p [ -  fi~b(x)] - 1 } dx 

Note that 

(4.4) 

(4.5) 

Y , / X , ~ e x p ( - a b )  and Y , / Y o ~ b  n as fl ---, oe (4.6) 

With these approximations, (2.8) for o- becomes 

1/s + Xo(~) + "'" = 1/(s + a) + Yo(~, a) + . ' .  (4.7) 

where the higher-order terms are negligible for small s. Similarly (2.9) for 7 
becomes 

y = (l/s 2 + X1 + "" ")/[1/(s + a)2 + y1 + ...3 (4.8) 

Now consider first the finite a solutions of (4.7), for which a does not 
vanish as fl ~ m. Then the 1/(s + ~) term is negligible compared to the 
other divergent terms and (4.7) becomes 

1/sXo ~ YO/Xo- 1 ~ exp ( - ab ) [1  + a2/2fl~'(b)+ O(1/~2)] - 1 (4.9) 
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where the standard saddle-point approximations for Xo and Y0 have been 
used. The 1/sXo term in (4.9) can be neglected, to order 1//~, provided that 
p/sXo~O, which will be true, from (3.10) and (3.11), if the rather weak 
condition u l n ( v )~  0 is satisfied. Under these conditions (4.9) is, to order 
lift, identical to (4.1) with xo=b and hence these solutions for ~ in the 
scaling region approach the p = 0 limit of the p > 0 values of ~r. In (4.8) the 
1/(s + cr) 2 term can be dropped giving 

7 ~ (1/s2Xl + 1) X1/Y1 ~ (1 + v2/s ~) exp(-(rb)  

which differs from the p = 0 limit value of 7 by the factor (1 + v2/sZ). These 
results show that those cr which do not vanish as/~--+ ~ contribute a part 
to the correlations in the scaling region, which is ~(1 +v2/s2) G~/b(x). 
There is, however, another contribution, from a solution of (4.7), which 
vanishes as/3 --+ oe. For this solution, all four terms of (4.7) must be kept 
since they are comparable for small a. For small ~r, (4.5) shows that 
Yo ~ -go-  a X 1  "1- " ' "  and with this approximation (4.7) becomes 
1Is-  1/(s + a).~ -~rX1, which has the solution 

(r o = --(s 2 + v2)/s (4.10) 

Using (4.10) in (4.8) gives 7o~(1/s2+Xt)/(s2/v4+ Yt) and since YI~X1  
for small a, finally ?'0 ~ 1)2/$2. These results show that in the scaling region 
the correlations take the form 

G(x),~(v2/s2)exp[-s(l  +vZ/s2)x]+(l  +v2/s~)G~b(X) (4.11) 

The scaling equation of state (3.11) can be used to replace the variable s in 
(4.1l) by the scaling variable u. The first term in (4.11) is responsible for 
the divergence in K/fl as /~--+ o0 in the scaling region, because of the 
vanishing of the inverse correlation range s(1 + v2/s2). For example, along 
the line u = 0 (corresponding to H = 0 for the Ising model) s = v and hence 
the correlation range diverges as 1/2s along this line. The form (4.1l) of 
G(x) is more complex than that for the correlations of the Ising model in 
the critical region, which have no term corresponding to the G~b term in 
(4.11). The long-ranged part of (4.11 ) does have scaling form with the same 
spatial dependence as in the Ising model but the dependence on the other 
scaling variables is not the same. 

As/3--+ oo in the scaling region the correlations (4.11 ) approach those 
of a two-phase mixture of a perfect solid phase of density 1/b and a zero 
density phase. To see this note that (3.14) implies, for any p < 1/b, that 
l+v2/s2~l /pb  in the critical region. Hence (4.11) becomes, for fixed 
p < lib in the T =  0 limit 

G p(x)  --" (1/pb-  1) + G ~/b(x)/pb (4.12) 
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where G~b is the correlation function of the perfectly localized periodic 
state of density 1/b. In terms of the pair distribution function 
( p ( x )  p(0)) = [G(x)+ 1] p2, (4.12) can be written as 

( p ( x )  p(O) ~ p = p b ( p ( x )  P(O) ~ I/b 

which shows that the pair distribution function is the appropriately 
weighted average of that of a zero density phase and a periodic phase of 
density 1/b. The higher-order distribution functions are products C4c) of pair 
distributions for these models (for example, ( p ( y )  p(x) p(O)) = 
( p ( y )  p ( x ) ) ( p ( x ) p ( O ) )  for y > x > 0 )  and thus show the same "two- 
phase" character. 

If f l ~  at any fixed p < l / b ,  then by (3.14) s ~ v  and by (3.15) 
K/fl ~ ~ and hence all of these states are "critical." If fl ~ ~ with p > 1/b 
(p > 0) then the limiting correlations are periodic but K/fl < oo. 

These results can be summarized by reference to the (p, T) phase 
diagram given in Fig. 1. The T - 0  states of positive pressure (the p axis, 
excluding the origin) are states of density p > 1/b with the correlations of a 
perfect crystal. These correlations develop continuously as T--, 0. The p = 0 
states of positive T (the T axis, excluding the origin) are of zero density. 
The heavy line is the states for which the f i e l d - l i k e ~  variable u = 0, or 
equivalently, from (3.10) and (3.11), p =  1/flx/Xl(fl) .  Along this line 

Zl  

k .  

0 .  

E 
t -  

/ 

/ /  ~-~---z_---- U=O 

/ I / , , ~ / i  

/ / / / ~  

/ / /  

/ 

(two phase states, 0___ p <_ I /b) 

(perfect crystal states,p<_ I/b) 

/ 
0 Pressure 

Fig. 1. Phase  d i a g r a m  for a po ten t i a l  wi th  m i n i m u m  at r = b. 
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p ~ 1/2b as T--*0. The critical region is reached by letting T ~  0 along 
paths asymptotic to this one ( p = e / / r  and the resulting T = 0  
states have densities O<~p<~ l ib depending on the constant ~. The 
correlation range diverges as T ~ 0  for all these paths and the T = 0  
correlations are those of the appropriate two-phase mixtures of a perfect 
crystal state and a zero density state. 

5. H A R D - C O R E  S Q U A R E  WELL FLUID 

In this case the potential is given by ~b(x)= oe for x < a, ~b(x)= - e  for 
a < x < c, and ~b(x)= 0 for x > c. Because, with this potential, the system 
has an infinite number of ground states, its behavior differs in some 
respects from the previous case where the unique periodic ground state of 
density l ib strongly influenced the low-temperature behavior. There is, 
however, still a scaling region where the equation of state takes the form 
(3.11), and the correlations have a long-ranged part. The differences lie, 
primarily, outside this region. 

For this potential, (2.1) for J can be explicitly evaluated to give 

J(fl, s) = exp(fle)[exp(-sa) - exp( - s c ) ] / s  + exp( - s c ) / s  (5.1) 

Consider first the case of p > 0 as fl ~ oo. Since s = tip and c > a, the first 
term in (5.1) dominates and a trivial calculation shows that, for all p > 0 ,  
p --, 1/a and K/~ ~ 0 as/~ -* oo. Thus the T =  0 equation of state is trivial in 
this case since the system can suport no positive pressure and simply 
collapses to the state of closest packing, p = 1/a. The correlations at long 
distance become a set of 6 functions separated by l/a, by arguments similar 
to those already used. The scaling region can be found, as in the previous 
case, by considering small s. In fact, the entire development of Section 3 for 
the single minimum potential carries over to this case except that explicit 
expressions can be found for the coefficients X~(fl) and thus also for the 
scaling variables u and v. In particular 

Xo(fl) = (c - a) exp fie, Xl( f l )  = (c2/2 - a2/2) exp fie (5.2) 

With these expressions for -go and X1 the scaling variables given by (3.10) 
and the scaling equation of state given by (3.11) apply equally to this case. 
Using (5.2) in (3.12) gives for the density 

p ~ 2/(c + a)(l  + v2/s 2) (5.3) 

which is just (3.14) with b replaced by (c + a)/2. There is a similar result, 
analogous to (3.15) for the compressibility. 

From (5.3) it follows that as/3 --, oe in the critical region the maximum 
density that can be reached is 2/(c + a) which is less than l/a, the density of 
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all the T =  0 positive pressure states. How does one find the T = 0  states 
with 2/(a + c)< p < 1/a? These states are reached by holding s finite and 
nonzero as/~ ~ oo. This is the major difference between the square well and 
the single minimum potential case. For  the single minimum case the s 
finite, /~ ~ oe limit gives the same density (p --- 1/b) as letting/~ ~ oe with 
p > 0 and then letting p ~ 0 so that all T =  0 states are either critical or 
positive pressure. Here there is a third class of T = 0  states. The T = 0  
correlations of these finite s states can be shown to be short-ranged and 
nonperiodic and to correspond to a single phase. The T =  0 correlations in 
the scaling region, p < 2/(c + a), can be shown to be the appropriate two- 
phase combination o f  those of the p = 2/(a + c) state and a zero density 
phase. 

As a final comment I note that a number ~5) of papers have been con- 
cerned with the properties of the direct correlation function (particularly 
it's range) for one-dimensional lattice and continuous systems. From the 
representation (2.7) one can easily find a formal expression for the Fourier 
transform, G(q) of G(x), and hence also of the direct correlation function in 
terms of all the an and 7n. The range of the direct correlation function is 
related to the solutions of 1 + pG(q) = 0 which requires a knowledge of all 
the an and 7n- The methods of this paper do not appear to give uniform 
enough approximations for these quantities at low temperatures to permit 
any substantial conclusions concerning the structure of the direct 
correlations. 
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